by Aries Productions – latest release APP 2.0.0-beta23
About Astro Pixel Processor
Milky Way to Rho Ophiuchi Mosaic by Stefan Lenz & Mabula Haverkamp. The data was captured by Stefan Lenz at the Kiripotib astrofarm in Namibia and processed by Mabula Haverkamp in APP 1.062. It’s a 11-panel mosaic shot with a Nikon D810a and 2 objectives: Nikon VR 400mm F/2.8G & Sigma Art 135 F/1.8. The longer focal length objective was used to capture more quality on interesting objects in the large field of view. Total exposure time is nearly 12 hours.
Astro Pixel Processor (APP) is being developed by Mabula Haverkamp (drs. M.Sc. E.M.W.P. Haverkamp) who has a doctorandus and Master of Science degree in Astrophysics from the University of Utrecht, 2004.
Mabula uses current scientific insights to develop APP besides developing and creating new innovative feautures and algorithms like it’s unique debayer algorithm Adaptive Airy Disc, Local Normalization Correction and fully automatic N-View mosaics.
APP couldn’t have been possible without extensive help and feedback from the astrophotography community worldwide and it’s future development path will be largely dependent on input and support from the community.
One of the main goals in the development of APP, is to make a complete Deep Sky Image Processing application that maintains ease of use while automatically using the most advanced algorithms to provide excellent results without the need to tweak dozens of parameters. APP will give very good results with default parameters on a wide range of datasets.
Astro Pixel Processor 1.068 showing a luminance light frame of 300 seconds of the Helix Nebula. The data was shot with the T32 telescope of iTelescope.Net at the Siding Spring Observatory in Australia.
The diversity of datasets from all users in the Deep Sky imaging sphere is huge and this is the main reason that explains, why it is very difficult to make an application that simply works on all datasets. And, at the same time, gives excellent results straight out of the box.Â
Messier 31 – The Andromeda Galaxy Mosaic in 8K resolution by Frank Schmitz, Osenau Observatory – Odenthal, Germany. The mosaic was shot with an 8″ Lacerta Newton, a ZWO ASI 1600 MM pro camera and on a Skywatcher EQ6-R Pro mount. Total exposure time of this LHaRGB mosaic is about 36 hours. “Wow, what a saga that was to put the mosaic together. This is my first LHaRGB mosaic ever and I had quite a hard time to match all the intensities … especially for the color channels. In the end I kept adding subs to low quality panels in order to even things out and zoooom I ended up with 36 hours of integration. My longest integration so far and by far the longest pre and post processing of all of my previous images. Fun fact: My last two images (Melotte 15 and the Pacman Nebula) which were both also 9+ hours were only shot while waiting for M31 to rise 😉 I encourage you to have a look into the full view: NGC 206, Cepheid Var 1, the core, the HA regions, small faint structures in Messier 110 really profit from the high resolution and the exposure time. I hope I did this wonderful target justice and I hope you like it! Let me know what you think!”
Pelican Nebula Close-up by Sara Wager, APOD 2017-08-03 APOD information:” The prominent ridge of emission featured in this vivid skyscape is designated IC 5067. Part of a larger emission region with a distinctive shape, popularly called The Pelican Nebula, the ridge spans about 10 light-years and follows the curve of the cosmic pelican’s head and neck. Fantastic, dark shapes inhabiting the view are clouds of cool gas and dust sculpted by energetic radiation from young, hot, massive stars. But stars are also forming within the dark shapes. Twin jets emerging from the tip of the long, dark tendril left of center are the telltale signs of an embedded protostar cataloged as Herbig-Haro 555 (HH 555). In fact, other Herbig-Haro objects indicating the presence of protostars are found within the frame. The Pelican Nebula itself, also known as IC 5070, is about 2,000 light-years away. To find it, look northeast of bright star Deneb in the high flying constellation Cygnus. ” Calibration, registration, normalization, integration and Hydrogen-alpha + Oxygen-III Bi-Color combination done with APP. Post processing in Photoshop.
Maurice Toet, 2 panel mosaic, Takahashi Epsilon E-180, Canon EOS 5D Mark II
By focussing in development on this particular goal, APP is now being used from absolute beginners in Deep Sky astrophotography to professional astronomical institutes around the world. APP is easy to work with and it’s results are very competitive as a lot of APP users will testify.